Đường cao tam giác vuông cân: Định nghĩa, tính chất & công thức tính

Đường cao tam giác vuông cân: Định nghĩa, tính chất & công thức tính

Đường cao trong tam giác vuông cân là phần kiến thức mà ta sẽ gặp thường xuyên trong suốt quá trình học môn Toán từ lớp 7 đến lớp 12. Vậy tính chất đặc biệt của nó là gì và làm thế nào để tính được độ dài đường cao tam giác vuông cân? Bài viết sau đây VOH Giáo Dục sẽ giới thiệu tới các em một số tính chất đặc biệt cùng với công thức tính độ dài đường cao tam giác vuông cân.

1. Đường cao trong tam giác vuông cân là gì?

Trong tam giác MNP vuông cân tại M, đoạn thẳng vuông góc kẻ từ đỉnh M đến đường thẳng chứa cạnh NP được gọi là đường cao của tam giác vuông cân MNP. Cụ thể trong hình vẽ dưới đây, ta nói đoạn thẳng MH là đường cao xuất phát từ đỉnh M của của tam giác vuông cân MNP.

tinh-chat-va-cong-thuc-tinh-do-dai-duong-cao-trong-tam-giac-vuong-can-1
Đường cao tam giác vuông cân

2. Tính chất đường cao trong tam giác vuông cân

Trong tam giác MNP vuông cân tại M, có đường cao MH. Ta có các tính chất như sau:

  1. Tam giác vuông MHN bằng tam giác vuông MHP;
  2. Độ dài của hai đoạn thẳng NH và đoạn thẳng PH là bằng nhau hay điểm H là trung điểm của đoạn thẳng NP. Khi đó, đường cao MH chính là đường trung tuyến của tam giác vuông cân MNP;
  3. . Khi đó, đường cao MH chính là đường phân giác góc NMP của tam giác vuông cân MNP;
  4. Hai cạnh góc vuông NM và PM là đường cao xuất phát từ đỉnh N và P tương ứng của tam giác vuông cân MNP.
Tham Khảo Thêm:  Sắc sảo hay sắc xảo Từ nào mới đúng Tiếng Việt

3. Chứng minh các tính chất đường cao tam giác vuông cân

(1) Vì tam giác MNP là tam giác vuông cân tại M, suy ra .

Lại có MH vuông góc với NP, nên ta có .

Trong tam giác vuông MHN có:

(tổng ba góc trong một tam giác).

Suy ra .

Tương tự trong tam giác vuông MHP có:

(tổng ba góc trong một tam giác).

Suy ra .

Do đó ta có .

Xét tam giác vuông MHN và tam giác vuông MHP có:

+

+

+

Do đó ta được: Tam giác vuông MHN bằng tam giác vuông MHP (g.g.g).

(2) Theo tính chất (1), ta có: Tam giác vuông MHN bằng tam giác vuông MHP.

Suy ra NH = PH hay điểm H là trung điểm của đoạn thẳng NP.

Khi đó, đường cao MH chính là đường trung tuyến của tam giác vuông cân MNP.

(3) Dựa vào phần chứng minh của tính chất (1), ta có: .

Khi đó, đường cao MH chính là đường phân giác góc NMP của tam giác vuông cân MNP.

(4) Do NM và PM là hai cạnh góc vuông của tam giác MNP.

Suy ra cạnh NM vuông góc với cạnh MP và cạnh PM vuông góc với cạnh MN.

Khi đó, NM và PM là đường cao xuất phát từ đỉnh N và P tương ứng của tam giác vuông cân MNP.

4. Công thức tính đường cao tam giác vuông cân

Trong tam giác MNP vuông cân tại M, có đường cao MH. Khi đó, độ dài đường cao MH trong tam giác vuông cân chính bằng một nửa độ dài cạnh NP hay MH = NP.

tinh-chat-va-cong-thuc-tinh-do-dai-duong-cao-trong-tam-giac-vuong-can-6
Cách tính đường cao tam giác vuông cân

Chứng minh

Trong tam giác MHN có: (theo chứng minh tính chất 1).

Suy ra tam giác MHN cân tại H hay NH = MH.

Trong tam giác MHP có: (theo chứng minh tính chất 1).

Suy ra tam giác MHP cân tại H hay PH = MH.

Tham Khảo Thêm:  Top 111 bài hát karaoke dễ hát mới nhất 2024

Mà NH = HP = NP (theo tính chất 2).

Khi đó, ta được MH = NP.

5. Một số dạng toán thường gặp liên quan đường cao tam giác vuông cân

5.1. Dạng 1: Bài tập chứng minh

*Phương pháp giải:

Muốn chứng minh một điều gì đó theo yêu cầu của bài toán, ta sẽ vận dụng các tính chất và công thức tính độ dài của đường cao trong một tam giác vuông cân đã trình bày ở trên vào để giải quyết bài toán đó.

Ví dụ 1. Cho tam giác MNP vuông cân tại M, có đường cao MH. Kẻ đoạn thẳng HK vuông góc với cạnh MP tại điểm K. Chứng minh HK = NM.

Lời giải

Vì MH là đường cao tam giác vuông cân MNP, nên theo tính chất 2 và công thức tính độ dài đường cao MH ta có: MH = HP = NP.

Lại có MH vuông góc với NP nên .

Do đó tam giác MHP là tam giác vuông cân tại H.

Xét tam giác MHP vuông cân tại H có HK là đường cao xuất phát từ đỉnh H.

Suy ra HK = MP (theo công thức tính độ dài đường cao tam giác vuông cân).

Mà MP = MN (tam giác MNP vuông cân tại M).

Do đó, ta suy ra HK = MN.

Vậy HK = NM.

5.2. Dạng 2: Tính độ dài đường cao tam giác vuông cân

*Phương pháp giải:

Ta sử dụng công thức tính độ dài đường cao tam giác vuông cân đã trình bày ở trên.

Ví dụ 2. Cho tam giác MNP vuông cân tại M, có đường cao MH. Biết độ dài cạnh NP = 6 cm. Hãy tính độ dài đường cao MH.

Lời giải

Vì MH là đường cao tam giác vuông cân MNP, nên theo công thức tính độ dài đường cao ta có:

MH = NP = . 6 = 3 (cm)

Vậy đường cao MH có độ dài bằng 3 cm.

Tham Khảo Thêm:  Sinh con năm 2024 mùa nào tốt, IQ vượt trội, may mắn cho cả gia đình

6. Một số bài tập vận dụng đường cao tam giác vuông cân

Bài 1. Cho tam giác HKT vuông cân tại H có đường cao HR. Biết độ dài cạnh KT = 16 cm. Độ dài đường cao HR là:

  1. 4
  2. 6
  3. 8
  4. 16

ĐÁP ÁN

Vì HR là đường cao tam giác vuông cân HKT, nên theo công thức tính độ dài đường cao ta có:

HR = KT = . 16 = 8 (cm)

Vậy đường cao HR có độ dài bằng 8 cm.

Chọn đáp án C.

Bài 2. Cho tam giác MNP vuông cân tại M, có đường cao MH. Gọi I là trung điểm của đoạn thẳng MN, nối P với I cắt đoạn thẳng MH tại J. Chứng minh MJ = MH.

ĐÁP ÁN

Vì I là trung điểm của MN, nên PI là đường trung tuyến kẻ từ đỉnh P của tam giác MNP.

Do MH là đường cao của tam giác vuông cân MNP, theo tính chất 2 ta có MH chính là đường trung tuyến.

Ta có J là giao điểm của hai đường trung tuyến MH và PI, nên suy ra J là trọng tâm của tam giác MNP.

Theo tính chất ba đường trung tuyến của một tam giác ta được:

MJ = MH.

Bài 3. Cho tam giác MNP vuông cân tại M, có đường cao MH. Biết độ dài hai cạnh MN = MP = 2 cm. Hãy tính độ dài đường cao MH.

ĐÁP ÁN

Xét tam giác MNP vuông tại M có:

MN2 + MP2 = NP2 (định lý Pi – ta – go).

Suy ra NP2 = 22 + 22 = 8 hay NP = (cm).

Vì MH là đường cao tam giác vuông cân MNP, nên theo công thức tính độ dài đường cao ta có:

MH = NP = . = (cm)

Vậy đường cao MH có độ dài bằng cm.

Qua bài viết này mong các em hiểu rõ hơn về các tính chất của đường cao tam giác vuông cân, đồng thời dựa vào công thức đã nêu các em có thể tính được độ dài đường cao này.

Chịu trách nhiệm nội dung: GV Nguyễn Thị Trang

Tin liên quan

Việc tổng hợp tin tức trên website đều được thực hiện tự động bởi một chương trình máy tính.

Tôn trọng bản quyền tác giả luôn là phương châm của Website tổng hợp tin tức.

© Bản quyền thuộc về tác giả và nguồn tin được trích dẫn. © pCopyright 2023. Theme Tin mới Nóng.